
125

0022-4715/02/0100-0125/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 106, Nos. 1/2, January 2002 (© 2002)

Degrees of Freedom of a Time Series

M. Eugenia Mera1 and Manuel Morán1
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We give a formal proof that if f is a smooth dynamics on a d-dimensional
smooth manifold and m is an ergodic and exact dimensional measure with
Hausdorff dimension dim m > d−1, then the number d of degrees of freedom of
the dynamics can be recovered from the observation of an orbit. We implement,
with this purpose, an algorithm based on the analysis of the microstructure
of m. We show how a correct estimation of d permits the computation of the
Liapunov spectrum with a high accuracy avoiding the issue of the spurious
exponents.
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1. INTRODUCTION

The phenomenon of chaos renders hopeless the exact prediction of the
behaviour of some dynamical systems. It is natural in these cases to take
advantage of the statistic regularity inherent in chaotic dynamics. A non-
trivial problem is to determine under which conditions the main properties
of an observed dynamics can be recovered from a single orbit. A limit cycle
attractor in the plane provides an elementary example of a situation where
the orbits of the system collapse in very few steps into a one-dimensional
manifold M, making impossible the computation, for instance, of the
Liapunov spectrum. One only can estimate, from the data points, the
action of the tangent maps on the bundle of one-dimensional tangent
spaces associated to M, from which only one Liapunov exponent can be
computed. Notice that in the above example, we cannot recover either the
number of state variables of the dynamics from the observation of a single
orbit of the system.



As we see below, the numerical estimation of the number of degrees of
freedom of an observed dynamics in presence of strongly negative Liapunov
exponents also presents a special difficulty.

The above considerations raise the problem of stating under which
conditions the main properties of a dynamics (M, f, m) where

˛M is a d-dimensional smooth submanifold

f: MQM is a measurable dynamics

m is an ergodic measure for f

(1.1)

can be computed from a single orbit of the system.
In this paper we show that if m is a-exact dimensional with a > d−1,

and f and M are sufficiently smooth, then we can recover the number d of
degrees of freedom of the dynamics from the observation of an orbit of the
system.We implement an algorithm with this purpose, and show how the
estimate of d that it gives may be used in the computation of the Liapunov
spectrum of the dynamics.

A measure m is said to be a-exact dimensional if

lim
r a 0

log m(B(x, r))
log r

=a m-a.e. x ¥M.

This notion was introduced by Young in ref. 1 where it is proved that,
if m is a-exact dimensional, then many notions of dimension of m, and in
particular the Hausdorff dimension dim m, coincide with a. Exact dimen-
sional measures play nowadays a central role in Dynamical Systems.
Barreira, Pesin, and Schmeling (2) have recently proved the conjecture of
Eckmann and Ruelle (3) that hyperbolic measures invariant under a C1+e

diffeomorphism are exact dimensional.
In regard to the second condition a > d−1, it seems to be a natural

condition which ensures that the dynamics does not take place in a sub-
manifold of dimension smaller than d, and it is satisfied by many standard
dynamical systems.

Mera and Morán (4) showed that the same above conditions that permit
the computation of d permit also the computation of the whole Liapunov
spectrum of m.

In Section 2 we describe the algorithm for the estimation of the
number of degrees of freedom of a dynamics from a scalar time series
{u0, u1,..., uN−1} obtained from the observation of an orbit of f, i.e.,
ui=h(f i(z)), where z ¥M and h is a smooth unknown observable. The
algorithm is based on the well known principal components analysis of the
distribution of the data points in the space of m-histories. If, for increasing
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values of m, the estimate of the dimension of the embedded submanifold
becomes stabilized to a value D, this will be our estimate of the dimension
d of the submanifold where the original dynamics is defined. If the algo-
rithm always gives m as output then two alternative hypotheses are pos-
sible: either the series is generated by a stochastic law, or it is a projection
of a higher dimensional dynamics in a lower dimensional space. In both
cases the hypothesis of low dimensional chaos can be rejected and it does
not make sense to compute the Liapunov spectrum. We give empirical
evidence on the efficiency of this algorithm for the detection of stochastic
noise. This is the most likely alternative when analysing, for instance,
financial markets data and, in general, social science data where, if there
exists a deterministic component, it is expected to be hidden by a strong
stochastic component. Techniques of noise reduction could be useful in
these cases. We give also empirical evidence on the efficiency of the algo-
rithm for the estimation of the number d of degrees of freedom of a low
dimensional dynamics. The presence of low dimensional determinism has
been extensively documented in the literature for the case of controlled
experimental data and, more exceptionally, in some uncontrolled experi-
mental data. In these cases a right estimation of d is a most important step
for further analysis of the data.

The estimation of the number d of degrees of freedom of a smooth
dynamics on a d-dimensional submanifold is specially reliable for dynamics
whose Liapunov dimension (3) L is larger than d−1 with L−d+1 large
enough. We also show that, for large time series, it is possible, in principle,
to detect hidden dimensions linked to strongly negative Liapunov expo-
nents, in which case L−d+1 is very small.

Section 3 is devoted to the proof of the theorem which gives a theore-
tical support to the algorithm proposed in Section 2. Finally, we show in
Section 4 how to take advantage of the principal component analysis for
the computation of the Liapunov exponents of a dynamics. We show how
a correct estimation of the dimension d of the submanifold where the
dynamics is defined may be crucial for a correct computation of the
Liapunov exponents.

2. ALGORITHM FOR THE ESTIMATION OF THE NUMBER OF

DEGREES OF FREEDOM OF AN OBSERVED DYNAMICS

We start assuming that (M, f, m) satisfy the regularity conditions in
(1.1), in particular we assume that f is a C1+e mapping and M is a C1+e

submanifold. Let {u0, u1,..., uN−1} be a scalar time series obtained from a
observation of the dynamics, i.e., ui=h(f i(z)) where z ¥M and h is an
unknown smooth observable. We first use the method of local dimension
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analysis to determine the most likely value of d. Let O (m)N :={xi, i=
0,..., N−m} be a m-dimensional embedding (5) of the time series, i.e.,

xi :=(ui, ui+1,..., ui+m−1).

Takens (6) proved that if M is compact, and m > 2d, then generically O (m)N is
contained in a d-dimensional submanifold Jm(M) of Rm, where Jm is an
embedding diffeomorphism. The same conclusion holds in the sense of
prevalence under additional conditions on the dynamics. (7)

The method of local dimension explores the local structure of the
empirical measure of the orbit in small balls centered at points of O (m)N . If
Jm(M) is a d-dimensional submanifold then, in small balls, the points of
O (m)N admit a good approximation by a d-dimensional linear subspace. The
search of the k-dimensional linear subspace which best fits the data points
is made through either principal component analysis or singular value
analysis. For xi ¥ O

(m)
N we denote by Vr the matrix which has as rows the

vectors xj−xi, for the points xj of O (m)N in the closed ball B(xi, r) centered
at xiand with radius r. It is known (8) that the k-dimensional linear subspace
Tk, r, k [ m, which best fits these data, in the sense that it minimizes the
sum of Euclidean distances between the vectors xj−xi, xj ¥ O

(m)
N 5 B(xi, r),

and the subspace Tk, r, is the linear subspace spanned by the k eigenvectors
corresponding to the k largest eigenvalues of the matrix Xr :=
1

N−m+1 (Vr)
t Vr. If we denote these eigenvalues arranged in a decreasing

ordering by sr, j, j=1,..., m, then the mean square error made by Tk, r is
Er, k :=;m

j=k+1 sr, j.
Our method determines the dimension d by studying the behaviour of

the normalized error E3r, k :=
Er, k

;mj=1 sr, j
as a joint function of r and k. We prove

in Section 3 that if m is an exact dimensional measure with dim m > d−1
and f and M are C1+e, then for k \ d the normalized error E3r, k scales
as r2e, and for k < d it goes to zero more slowly than ra for any a > 0. This
result gives a necessary and sufficient condition for the dimension of M to
be equal to d. To get a statistically robust estimation of the value of d we
average the values of E3r, k over the points of the orbit, and we show that
these averages behave as E3r, k.

The idea of studying the errors Er, k for r fixed and different values of
k was first proposed by Froehling et al. (9) (see ref. 9). Broomhead et al. (10)

and Pike (11) study the scaling law of the singular values sr, j :=`sr, j,
j=1,..., m of the matrix Vr as functions of r, instead of studying the errors
Er, k. They gave an heuristic argument to show that if O (m)N is contained in a
smooth d-dimensional submanifold of Rm and m is absolutely continuous
w.r.t. the Lebesgue measure, then the first d singular values, after a nor-
malization dividing by the square root of the number of points of the orbit
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in B(xi, r), should take approximately equal values and they scale as r,
whilst the last m−d normalized singular values scale as r2.

Invariant measures for a chaotic dynamics are known to display
frequently geometric complexity. They often are highly anisotropic, typi-
cally supported on a fractal set. We will show in Section 3 experiments for
which, in agreement with the anisotropy typical of the invariant measures,
the power of the signal is not equidistributed among the first d singular
values.

Moreover, in the case of a chaotic dynamics, the analysis of the indi-
vidual behaviour of each singular value is not sufficient to determine the
number d of degrees of freedom of the dynamics. It only can give a lower
bound for d. We show below that, in order to obtain the upper bound
for d, the behaviour of the normalized errors E3r, k, which aggregate the
values of the m−k last principal components, must be considered.

The method of principal components has been used in the literature
for other related purposes as (1) to obtain optimum global coordinates, i.e.,
the dimension of the subspace containing the embedded manifold and not
the dimension of the manifold itself, (12) (2) the estimation of a working
dimension, i.e., a value of m which ensures that the observed dynamics is
correctly reconstructed in the space of m-histories, (13) (3) the measurement
of the noise level (14) or (4) the estimation of a local intrinsic (fractal)
dimension of the attractor (refs. 15–17).

2.1. Sketch of the Theoretical Foundation of the Algorithm

We give a sketch of the proof of the theoretical basis of our algorithm.
Interested readers can follow technical details in the next section. We
assume that the hypotheses (6) guaranteeing that O (m)N is contained in a
d-dimensional C1+e submanifold Jm(M) hold, where Jm is an embedding
C1+e diffeomorphism. The normalized errors E3r, k are, for sufficient large N,
natural estimates of

E1r(Tk, r) :=
>B(xi , r) (|y−xi−PTk, r

(y−xi)|2)2 dn(y)

>B(xi, r) (|y−xi |2)2 dn(y)

where Tk, r is the k-dimensional linear subspace which minimizes, over the
set G(n, k) of k-dimensional linear subspaces, the expression

Er(T) :=F
B(xi, r)

(|y−xi−PT(y−xi)|2)2 dn(y),
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PT is the orthogonal projection on T ¥ G(n, k), and n is the measure
induced by m under the diffeomorphism Jm. Observe that Er(T) measures
the L2-distance between the orthogonal projection PT and the identity. The
linear subspace Tk, r spanned by the k eigenvectors corresponding to the k
largest eigenvalues of the matrix Xr is a natural estimate of Tk, r.

We must show that E1r(Tk, r) scale as r2e for any k \ d and as O(1) for
k < d. If k \ d then Td, r …Tk, r so that Er(Tk, r) [ Er(Td, r) [ Er(Td) where
Td is the tangent space to the manifold Jm(M) at xi. Since Jm(M) is a
d-dimensional C1+e submanifold there is a constant K such that

(|y−xi−PTd
(y−xi)|2)2 [K(|y−xi |2)2(1+e) [Kr2e(|y−xi |2)2

for any y ¥ B(xi, r) and r sufficiently small. Hence E1r(Tk, r) [ E1r(Td) [Kr2e

for sufficiently small r.
The most delicate part of the argument is to show that E1r(T) cannot

be O(ra), a > 0, if T is a k-dimensional linear subspace with k < d. In fact
to show this requires the stronger assumption that m is an exact dimen-
sional measure with dim m > d−1. Assume on the contrary that there is a
k-dimensional linear subspace T, with k < d, such that E1r(T) [Kra, a > 0
for small r. Then,

E1r(Td, r) [ E1r(Tk, r) [ E1r(T) [Kra.

Hence

>B(xi, r) (|(PTk, r
−PTd, r

)(y−xi)|2)2 dn(y)

>B(xi, r) (|y−xi |2)2 dn(y)

=
>B(xi, r) (|y−xi−PTd, r

(y−xi)−(y−xi−PTk, r
(y−xi))|2)2 dn(y)

>B(xi, r) (|y−xi |2)2 dn(y)

[ E1r(Td, r)+E1r(Tk, r) [ 2Kra, (2.1)

for small r. Thus, the normalized L2-distance between the orthogonal
projections PTk, r

and PTr, d
becomes very small for sufficient small r. The key

point of the argument is that if the first expression in formula (2.1) goes
to zero as O(ra) then the measure n must be concentrated near Tr, k,
which is the kernel of PTr, k

−PTr, d
, at a speed that implies dim n [ k. Since

dim n=dim m > d−1, this gives the desired contradiction.
The following example illustrates the difficulties that can arise when

analyzing the local geometry of a measure through the method of principal
components. Let m be the Lebesgue measure on a planar curve in R3. If we
apply the method of principal components to compute the bidimensional
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subspace which best fits the measure on a ball centered at a point of the
curve, this will be, of course, the plane P containing the curve. Perturb
now slightly this measure, in such way that it spreads out on a narrow
bidimensional ribbon, orthogonal to P and containing the original curve.
If this is suitably done it might occur that the plane which best fits the
measure in small balls is still the plane P, instead of the tangent plane to
the bidimensional ribbon. If the dimension of the perturbed measure is
larger than 1 this irregularity can only occur at exceptional points. This
illustrates the role of the hypothesis dim m > d−1 when using the method
of principal components.

2.2. The Algorithm

We now see how a test, based in the above ideas, can be numerically
implemented. First of all, we consider the following quantities, which
measure the rate of convergence to zero of the average normalized errors
OE3r, kP over the points xi of the orbit

ck(r) :=
ln(OE3r, kP)

ln r
=

ln(;m
j=k+1 O

sr, j

;mj=1 sr, j
P)

ln r
, k=1,..., m−1

Notice that ck(r) has a physical meaning: by Birkhoff ergodic theorem (18) it
is the natural estimate, for large N, of

ln > E1r(Tk, r) dn
ln r

.

We plot the points (ln r, ln(OE3r, kP)) for a wide range of values of r
and we estimate the rate of convergence of the normalized errors to zero as
the slope ck of such curve. We have seen above that

ck=˛
0 if k < d
a > 0 if k \ d.

(2.2)

The routines for the computation of singular values display a more
robust behaviour. For this reason, the eigenvalues sr, j, j=1,..., m are
obtained as the squares of the singular values of the matrices 1

`N−m+1
Vr.

Let s1r, j :=
sr, , j

;mk=1 sr, k
, j=1,...., m the normalized singular values. It is easy to

check that if the j th average normalized singular value Os1r, jP is constant
and positive for a sufficient large range of small values of r, then cj−1 is null
and we get directly d \ j from (2.2). See examples below for the practical
implementation of this test.
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We have implemented a FORTRAN code to obtain the dimension
estimates. In order to get independence of the results from the scale of
measurement, the original time series is normalized to the interval [0, 1].
The entry parameters of the code are the embedding dimension m and an
initial radius rmax. The output of the algorithm are the average normalized
singular values Os1ri, jP, j=1,..., m, and the pairs of points (ln ri, ln(OE3ri, kP)),
k=1,..., m−1, for ri=

rmax(50−i)
50 , 0 [ i [ 50, and for the values of i such that

there are enough many neighbouring points of the data points.
Figure 1 corresponds to a scalar time series from a sample of a

Uniform distribution in [0, 1]. Observe that for all the embedding dimen-
sions m, the average normalized singular values Os1r, jP are positive for any
j=1,..., m. Then ck=0 for any k=1,..., m−1, and (2.2) gives d \ m. This
gives an indication of the stochasticity of the process which generates the
time series. Notice that a fast scarcity of neighbouring points for increasing
values of m serves as indication that the data are not in a d-dimensional
submanifold of Rm with d° m.

The dimensional analysis for a time series from Henon system can
be seen in Fig. 2. Observe that the first two average normalized singular

Fig. 1. Average normalized singular values as a function of the radius for a sample of a
Uniform distribution. The entry parameters are N=50000, m ¥ {2,..., 5} and rmax=0.25.
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Fig. 2. Dimensional analysis for a time series from the observation of a Henon system.
The equations of the dynamics are xk+1=1−1.4x2k+yk, yk+1=0.3xk and the observable
is h(x, y)=x2+y2. The entry parameters are N=50000, m ¥ {5, 6, 7} and rmax=0.1.
(a) Average normalized singular values as a function of the radius. (b) Scaling law for the
average normalized errors for m ¥ {5, 6, 7} and k=1, 2
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values Os1r, jP, j=1, 2 are positive for any m ¥ {5, 6, 7}, and they take
remarkably stable values at any scale of observation. From this d \ 2
follows. Notice that in agreement with the anisotropy, typical of the
invariant measures, the power of the signal is not equidistributed among
the first two singular values as asserted in refs. 10 and 11. The third
average normalized singular value appears small for any m ¥ {5, 6, 7} but
we do not know if its rate of convergence to zero is sufficiently small as to
guarantee that d=2. For this reason we take m > 4=2dg where dg is the
lower bound for d obtained from the above analysis, and we plot the
curves (ln r, ln(OE3r, kP)) for m \ 2dg and k ¥ {1, 2}. We can see in Fig. 2b
that the slopes of the curves for k=1 are null whilst they are positive for
k=2. Thus, we obtain the estimate d=2 for the dimension of the sub-
manifold where the observed dynamics is defined.

The case of Henon system above, perturbed with a gaussian noise of
small power, can be seen in Fig. 3. It is possible to observe four strips of
singular values significantly different from zero. The first two of them are

Fig. 3. Dimensional analysis for the time series in Fig. 2 perturbed with a Gaussian noise
with a 1% standard deviation of the standard deviation of the unperturbed signal. The entry
parameters are N=50000, m ¥ {5, 6, 7} and rmax=0.1.
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bigger, and they correspond to the bidimensional local structure of the
unperturbed system. The third and fourth ones, corresponding to the
remaining singular values, can be identified as due to the noise, since they
increase for small radii. This indicates that the noise eventually dominates
the signal at small scales of observation. It is not possible to know from
this analysis whether there exist more small singular values due to a higher
dimensional local structure of the unperturbed system, since they would be
hidden by the noise. Thus we only can assert d \ 2. Further research, based
perhaps on noise reduction techniques, (8) is needed to complete the dimen-
sional analysis of noisy attractors.

2.3. Hidden Dimensions

Next we present the case when one or more degrees of freedom of a
smooth dynamics are hidden due to the existence of strongly negative
exponents which cause that the data points at small scales of observation
appear as stretched along the linear span of the spatial directions corre-
sponding to the unstable local manifold. This happen to occur for instance
in Lorenz and Rössler dynamics which are three dimensional dynamics
with dimension of m close to two. From a numerical point of view, this
produces a very small average normalized error made by the projections on
the bidimensional linear subspaces which best fit the data points in small
balls. Thus, the third average normalized singular value is small, rendering
it difficult to obtain a clear indication of the existence of the third dimen-
sion from the time series.

We illustrate this fact using Lorenz dynamics (see Fig. 4). There
appear three strips (Fig. 4a) around the approximate values 0.55, 0.35 and
0.1, corresponding to the averages for the first three normalized singular
values. Since that corresponding to the second one is around a 35%, we can
state that the dimension of the submanifold must be at least two. The third
one appears to be small but it remains positive and constant even for very
small radii. Thus, the estimate d of the dimension of Jm(M) must be at
least three for any m \ 3. We then plot the curves (ln r, ln(OE3r, kP)) for
m ¥ {7, 8} and k ¥ {1, 2, 3}. The slopes (see Fig. 4b) for k=1 and k=2 are
null whilst for k=3 are positive at least for small values of r. Then, the
estimate of the dimension of Jm(M) must be d=3.

3. FORMAL STATEMENTS AND PROOFS

We start giving some definitions and notation. Let (M, f, m) be a
dynamics satisfying conditions (1.1). We denote by ON(z) the first N points
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Fig. 4. Dimensional analysis for a time series from the observation of the Lorenz dynamics.
The equations are ẋ=−16(x−y), ẏ=−xz+45.92x−y, ż=xy−4z and the observable is
h(x, y, z)=y. A orbit of this system is obtained using a fourth-order Runge-Kutta method
with a integration time step h=0.001, and the sample time is Dt=0.03. The entry parameters
are N=50000, m ¥ {5, 6, 7, 8} and rmax=0.1. (a) Average normalized singular values as a
function of the radius. (b) Scaling law for the average normalized errors for m ¥ {7, 8}, and
k=1, 2, 3.
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of the orbit of z ¥M, and by mN the corresponding empirical measure of
the orbit, that is mN := 1

N;N−1
i=0 dfi(z). The weak convergence of a sequence

of measures {nN} to a measure n is denoted by nN`w n, and the support of
a measure n by spt(n). We denote by n | A the restriction of the measure n to
the set A, by “A the boundary of the set A, and by g#n the measure induced
by n under the mapping g, that is g#n(A)=n(g−1(A)) for any set A …M.

Let dim(A) denote the Hausdorff dimension (19) of the set A. The
Hausdorff dimension of the measure n is

dim n :=inf{dim(A): m(A) > 0}.

The set of k-dimensional linear subspaces of Rn is denoted by G(n, k),
and the orthogonal projection of Rn onto T ¥ G(n, k) is denoted by PT.

In this section we give conditions guaranteeing that the number d of
degrees of freedom of the dynamics can be recovered from ON(z). Notice
that this framework covers the case of reconstructed dynamics. The
m-dimensional embedding of the time series O (m)N (see Section 1 for the
notation) is an orbit of the dynamics (Jm(M), fg :=Jm p f p J

−1
m , n :=fg

#m)
where Jm(z) :=(h(z), h(f(z)),..., h(fm−1(z))).

Theorem 3.1. Let M be a C1+e d-dimensional submanifold of Rn,
let f be a measurable dynamics on M, and let m be an f-invariant, ergodic
and a-exact dimensional Borel probability measure on M with a > d−1.
Let z ¥M, xi ¥ ON(z), r > 0, and XN, r :=

1
N (VN, r)

t VN, r, where VN, r is the
matrix which has as rows the coordinates of the vectors xj−xi with respect
to an arbitrarily chosen orthonormal basis of Rn, with the index j ranging
in the set N :={j: xj ¥ ON(z) 5 B(xi, r)}. Let sN, r, 1 \ · · · \ sN, r, n be the
eigenvalues of XN, r,

s1N, r, j :=
sN, r, j

;n
l=1 sN, r, l

, j=1,..., n, and

dk :=lim inf
r a 0

lim
NQ.

ln(;n
j=k+1 s1N, r, j)

ln r
, k=0,..., n−1.

Then the following implications hold m-a.e. z,

k \ d . dk > 0.

To prove this theorem we need the following lemma.
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Lemma 3.2. Let m be a Borel probability measure on M … Rn. Let
x ¥ spt(m), k ¥ {0, 1,..., n−1} and let Tk, r ¥ G(n, k) be the subspace for
which the minimum, over the set G(n, k), of

Er(T) :=F
B(x, r)

(|y−x−PT(y−x)|2)2 dm(y),

is attained, where PT denotes the orthogonal projection of Rn onto
T ¥ G(n, k). Let B be an arbitrary orthonormal basis of Rn, and let Xr be
the matrix with (i, j) entry given by

F
B(x, r)

(yi−xi)(yj−xj) dm(y),

where yi−xi is the ith coordinate of the vector y−x with respect to B. Let
sr, 1 \ · · · \ sr, n be the eigenvalues of Xr, and let wr, i, i=1,..., n be the
corresponding eigenvectors. Then

(i) Tk, r=span{wr, 1,..., wr, k}.

(ii) Er(Tk, r)=;n
j=k+1 sr, j.

Proof of Lemma 3.2. See the proof of Theorem 2 given in ref. 8 for
discrete measures.

Remark 1. Notice that, for k=0, Lemma 3.2 gives

C
n

j=1
sr, j=F

B(x, r)
(|y−x|2)2 dm(y).

Proof of Theorem 3.1. Let TN, k, r be the subspace in G(n, k) for
which the minimum of

EN, r(T) :=F
B(xi, r)

(|y−xi−PT(y−xi)|2)2 dmN(y)

is attained (recall that mN is the empirical measure of the orbit). It is known
(see ref. 8 or Lemma 3.2) that

EN, r(TN, k, r)= C
n

j=k+1
sN, r, j and TN, k, r=span{wN, r, 1,..., wN, r, k},

where wN, r, j, j=1,..., k are the eigenvectors corresponding to the first k
eigenvalues of XN, r.
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Let Xr be the matrix in Lemma 3.2 for the point xi and the measure m,
let sr, 1 \ · · · \ sr, n be the eigenvalues of Xr, and let {wr, 1,..., wr, n} be the
corresponding eigenvectors. Using that M is a d-dimensional submanifold,
“B(xi, r) is an n−1 dimensional submanifold, and dim m > d−1, we obtain
that m(“B(xi, r) 5M)=0 for enough small r. This fact, together with
mN`

w m for m-a.e. z ¥M, gives mN | B(xi, r)`w m | B(xi, r). Therefore
limNQ. XN, r=Xr for m-a.e. z ¥M and any xi ¥ ON(z). Then, by the con-
tinuous dependence of the spectrum of a matrix upon its entries and
Lemma 3.2 we have

lim
NQ.

C
n

j=k+1
s1N, r, j= lim

NQ.
C
n

j=k+1

sN, r, j

;n
l=1 sN, r, l

= C
n

j=k+1

sr, j

;n
l=1 sr, l

=
>B(xi, r) (|y−xi−PTk, r

(y−xi)|2)2 dm(y)

>B(xi, r) (|y−xi |2)2 dm(y)
m-a.e. z ¥M,

where Tk, r=span{wr, 1,..., wr, k}. Therefore

dk=lim inf
r a 0

ln 1 Er(Tk, r)
>B(xi, r) (|y−xi |2)2 dm(y)

2

ln r
m-a.e. z ¥M.

(i) We prove that k \ d implies dk > 0.

Let (U, f) be a chart at xi ¥M, where U is a neighborhood of xi, and f is a
C1+e diffeomorphism on U such that f(xi)=0. Since f is C1+e there exist
constants L and r0 such that |f−1(t)−f−1(0)−Df−1(0) t|2 [ L(|t|2)1+e holds
if |t|2 < r0. Furthermore for any constant K, with K > ||Df(xi)||2 there exists
an r1 <

r0
K such that |f(y)−f(xi)|2 [K |y−xi |2 holds if |y−xi |2 [ r1. Let

Txi (M) denote the tangent space of M at xi. Let r < r1, y ¥ B(xi, r) and
t=f(y). Then

|y−xi−PTxi
(M)(y−xi)|2=|f−1(t)−f−1(0)−PTxi

(M)(f−1(t)−f−1(0))|2

[ |f−1(t)−f−1(0)−Df−1(0) t|2 [ L(|t|2)1+e

=L(|f(y)−f(xi)|2)1+e [ LK1+er e |y−xi |2,

where the first inequality holds because Df−1(0) t is a vector in Txi (M).
Thus Er(Td, r) [ Er(Txi (M)) [ (LK1+er e)2 >B(xi, r) (|y−xi |2)2 dm(y) for r < r1,
and therefore dd \ 2e holds. If k \ d then Er(Tk, r) [ Er(Td, r) so that
dk \ dd \ 2e.
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(ii) We prove that dk > 0 implies that k \ d.

Assume that k < d. Since dk > 0, for any g with 0 < g < dk there is an r0
such that

Er(Td, r) [ Er(Tk, r) [ rdk −g F
B(xi, r)

(|y−xi |2)2 dm(y) (3.1)

for r < r0. Since m is an a-exact dimensional measure, with a > d−1, we can
obtain an analogous result to that given in Theorem 2 of ref. 20: for any
y > 0, and for m-a.e. xi ¥M there are positive constants C, S and r1, with
S < 1 and r1 < r0, depending on xi and on the chosen atlas of M, such that
for any linear map b: RnQ Rn,

||b||2 [
C
r1+y
5 1
m(B(xi, Sr))

F
B(xi, r)

(|b(y−xi)|2)2 dm(y)6
1/2

(3.2)

holds for r < r1. Taking y with 0 < y < dk −g
2 , b=PTd, r

−PTk, r
in (3.2), and

using (3.1) we obtain

||PTd, r
−PTk, r

||2 [
C
r1+y
5 1
m(B(xi, Sr))

F
B(xi, r)

(|(PTd, r
−PTk, r

)(y−xi)|2)2 dm(y)6
1/2

[
C

r1+y(m(B(xi, Sr)))
1
2
[(Er(Tk, r))

1
2+(Er(Td, r))

1
2]

[ 2Cr
dk −g

2 − y 1 m(B(xi, r))
m(B(xi, Sr))

21/2 (3.3)

for r < r1. This inequality, together with the fact that m is an exact dimen-
sional measure, give that limrQ 0 ||PTd, r

−PTk, r
||2=0, which contradicts that

Tk, r ¥ G(n, k) with k < d. L

Remark 2. The hypotheses that m is an a-exact dimensional measure
with dim m > d−1 forces the first inequality in (3.3) to be true, which gives
the desired contradiction. In fact, the two last inequalities in (3.3) might
hold for measures concentrated near the kernel Tk, r of the linear map
PTd, r

−PTk, r
, but then the dimension of such measures has to be less than or

equal to d−1.

Remark 3. Let xi ¥ ON(z) and let s (i)N, r, j, j=1,..., n be the eigen-
values, given in a decreasing ordering, of the matrix XN, r at xi. Let I be a
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subset of indices of {1,...., N}, and let Os1N, r, jP be an average, over the
points corresponding to the indices in I, of the normalized jth eigenvalue,
j=1,..., n. Let

cl, I :=lim inf
r a 0

lim
NQ.

ln(;n
j=l+1 Os1N, r, jP)

ln r
, l=0,..., n−1.

Then by the inequalities

min{s (i)N, r, j: i ¥ I} [ Os1N, r, jP [ max{s (i)N, r, j: i ¥ I}

and Theorem 3.1 we have that

l \ d . cl, I > 0

for m-a.e. z ¥M, which also implies Os1N, r, jP ’ 0 and Os1N, r, jP ’ 0 for any
j > d, large N, and small r, where s1N, r, j :=

sN, r, j
;nj=1 sN, r, j

and sN, r, j=`sN, r, j is

the jth singular value of the matrix 1
`N

VN, r. This gives a theoretical support
to the algorithm proposed in Section 2.

4. ADAPTATION OF THE ECKMANN AND RUELLE ALGORITHM

TO THE COMPUTATION OF THE LIAPUNOV EXPONENTS

IN SMOOTH SUBMANIFOLDS

Let (M, f, m) be a dynamics satisfying the regularity conditions in
(1.1). We assume that f is a C1+e mapping and M is a d-dimensional C1+e

manifold. Let {u0, u1,..., uN−1} be a scalar time series obtained from a
smooth observation of the dynamics, and let O (m)N :={xi, i=0,..., N−m}
be a m-dimensional embedding of the time series with m > 2d. The
Eckmann and Ruelle algorithm (E.R.A. for the sequel) for the estimation
of the Liapunov spectrum (see ref. 21) is based on the estimation of the
tangent maps from O (m)N . They take as estimate of the tangent map at xi
the linear map Si which minimizes, in the set L(Rm) of linear maps
S: RmQ Rm, the mean square error

C
j ¥N

(|xj+1−xi+1−S(xj−xi)|2)2,

where N denotes the set of indices corresponding to a given number of
closest neighbouring points to xi.

Since O (m)N … Jm(M), where Jm(M) is a d-dimensional submanifold
of Rm, the tangent map at xi for the embedded dynamics is defined on the
space Txi (Jm(M)) tangent to Jm(M) at xi. Therefore, we can avoid the issue
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of the detection of the m−d spurious exponents (compare the method used
in refs. 22 and 23 to solve the issue of the spurious exponents), if the esti-
mates of the tangent maps belong to L(Rd). The procedure we describe
below was first proposed by Darbyshire and Broomhead (24) and Stoop and
Parisi. (25)

Let Tg
i be an estimate of Txi (Jm(M)), and, for j ¥N, let PTg

i
(xj−xi),

be the orthogonal projection of the vector xj−xi on Tg
i and let r be a small

radius. We give as estimate of the tangent map at xi the linear map SN, r, i
which best describes how the evolution law takes the vectors PTg

i
(xj−xi) to

the vectors PTg
i+1
(xj+1−xi+1), for j ¥ Q :={j ¥N : PTg

i
(xj−xi) ¥ B(0, r)}.

That is, SN, r, i is the linear map which minimizes, in L(Rd), the mean
square error

E
N, r, i(S) :=C

j ¥ Q

(|PTg
i+1
(xj+1−xi+1)−SPTg

i
(xj−xi)|2)2.

We take as estimate of Txi (Jm(M)) the d-dimensional linear subspace
Tg
i which best fits the data, in the sense that it minimizes the sum of the

Euclidean distances between the vectors xj−xi and Tg
i , for j ¥N. Tg

i is the
linear subspace spanned by the d eigenvectors corresponding to the d
largest eigenvalues of the correlation matrix Xr0 (see Section 2 for the defi-
nition of this matrix). Let Gi be the orthonormal basis of Tg

i given by these
eigenvectors, and let Bi be the d×m matrix whose rows are the coordinates
of the vectors of Gi expressed in the canonical basis of Rm. Then, Bi is the
matrix of the orthogonal projection PTg

i
: RmQ Tg

i expressed with respect to
the canonical basis of the original space Rm and with respect to the ortho-
normal basis Gi of the image space Tg

i . Therefore, the matrix of the linear
map SN, r, i expressed with respect to the orthonormal bases Gi and Gi+1 is
the d×d matrix which minimizes the expression

EN, r, i(S)=C
j ¥ Q

(|Bi+1(xj+1−xi+1)−SBi(xj−xi)|2)2. (4.1)

Let lj, j=1,..., d be the Liapunov exponents of the tangent map. Let
aK, N, r, j, j=1,..., d be the estimates of the Liapunov exponents provided by
the algorithm, obtained from an iterative QR decomposition of the d×d
matrix SN, r, K−1 · SN, r, K−2 · · · SN, r, 1 · SN, r, 0. In ref. 4 it is proved that if the
measure m is exact dimensional with dim m > d−1, then the adaptation of
E.R.A. described above gives the whole Liapunov spectrum of the tangent
map, i.e.,

lim
KQ.

lim
rQ 0

lim
NQ.

aK, N, r, j=lj, j=1,..., d.
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The proof relies on the convergence of SN, r, i to Dfg(xi) where fg=
Jm p f p J

−1
m , that is

lim
rQ 0

lim
NQ.

SN, r, i=Dfg(xi).

In ref. 4 we show that limNQ. SN, r, i=Sr, i where Sr, i is the natural estimate
of the action of Dfg in the ball B(xi, r), in the sense that it is the linear
map which minimizes errors, with respect to the ergodic measure n=Jm#m.
The most delicate part of the proof is to see that, under the above
hypotheses, limrQ 0 Sr, i=Dfg(xi) holds. Notice that if the ergodic measure
is concentrated near a submanifold with dimension less than or equal to d
that convergence may fail to hold. This actually occurs, for instance, in the
case of a limit cycle attractor in the plane, mentioned at the beginning of
the introduction.

If the dimension d is correctly estimated and the data are consistent
with a differentiable dynamics (a test of differentiability can be seen in ref. 26)
then the whole Liapunov spectrum of the dynamics can be computed with
an arbitrary accuracy (see Table I).

A right estimation of the true value of d is essential for a right com-
putation of the Liapunov spectrum. If d is overestimate there appear
spurious exponents. If d is underestimate then the algorithm does not
correctly work (see Table II).

If the estimate of d coincides with the dimension of the unstable
manifold, the algorithm computes the action of the tangent map along the
unstable manifold. One might hope that in this case the algorithm should
give the non negative part of the Liapunov spectrum. This seems in con-
tradiction with the numerical results in Table II. The reason of this
disagreement could be due to the fact that the unstable global manifold is

Table I. Liapunov Exponents of Lorenz Dynamics in Fig. 4 as a Function of the

Embedding Dimension m a for D=3

m=3 m=4 m=5 m=6 m=7 m=8

a1 3.7285 1.5453 1.5121 1.5233 1.5117 1.5010
a2 −0.6885 −0.0604 0.0013 −0.0192 −0.0094 0.0012
a3 −25.3491 −25.5362 −24.6822 −23.8908 −22.6678 −22.4483

a The data are the observation of a 500000 points orbit of this system with observable
h(x, y, z)=y. We have taken D=3 as the estimate of the dimension d of the submanifold
where the dynamics is defined. It is known that the true values of the Liapunov exponents
are l1 ’ 1.5, l2=0 and l3 ’ −22.5. Notice the high accuracy of the estimates of the three
exponents for m \ 7

Degrees of Freedom of a Time Series 143



Table II. Liapunov Exponents of Lorenz Dynamics in Fig. 4 as a Function of the

Embedding Dimension m a for D=2

m=2 m=3 m=4 m=5 m=6 m=7 m=8

a1 25.3697 7.0058 4.7285 2.7706 2.2330 1.8587 1.6733
a2 −5.1752 −5.3109 −3.4121 −1.9610 −1.2353 −0.7798 −0.4810

m=9 m=10 m=11 m=12 m=13 m=14 m=15

a1 1.5757 1.5968 1.5457 1.5074 1.4688 1.5490 1.4770
a2 −0.3888 −0.3486 −0.2178 −0.1691 −0.1099 −0.1959 −0.1041

a The data are the observation of a 100000 points orbit of this system with observable
h(x, y, z)=y. We have taken D=2 as the estimate of the dimension d of the submanifold
where the dynamics is defined. A non correct estimate of the dimension d cause a bad esti-
mate for the first Liapunov exponent for m [ 8 and for the second one for m [ 11

not a differentiable manifold because of the complex folds of the global
unstable manifold onto itself over the chaotic attractor. This explanation is
also confirmed by Table II, which shows that for increasing embedding
dimensions, for which the unstable manifold is supposed to be unfolded,
the algorithm gives reasonably good estimates of the non negative part
of the Liapunov spectrum. If this pattern is observed in computing the
Liapunov spectrum of a dynamics, it gives an indication that the estimate
D of the number of degrees of freedom d should be increased.
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